Effect of Ti Addition on the Hot-Tearing Susceptibility of the AlSi5Cu2Mg Alloy

Author:

Matejka Marek1ORCID,Bolibruchová Dana1ORCID,Sýkorová Martina1

Affiliation:

1. Department of Technological Engineering, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia

Abstract

The aluminum alloy AlSi5Cu2Mg finds application in the production of high-stress cylinder head castings. The AlSi5Cu2Mg alloy is specific for its high susceptibility to hot tearing. One effective way to reduce the susceptibility of Al-Si-Cu-Mg alloys to hot tearing is by grain refining. The AlSi5Cu2Mg alloy is designed with a specific chemical composition that significantly limits the Ti content to a maximum of 0.03 wt.%. This limitation practically limits the use of standard Al-Ti-B-based refiners. The present work focuses on the investigation of the influence of graded Ti addition on the susceptibility of the AlSi5Cu2Mg alloy to hot tearing. The Ti addition was deliberately chosen beyond the manufacturer’s recommendation (0.1, 0.2, 0.3 wt.%). The solidification process of the experimental alloys with Ti addition was evaluated in this research. On the basis of the thermal analysis, it was shown that due to the addition of Ti, the solidification interval of the AlSi5Cu2Mg alloy increases. An increase in the solidification interval is often associated with an increase in the susceptibility to tearing. The susceptibility of the experimental alloys to hot tearing was evaluated qualitatively and quantitatively. Based on the quantitative and qualitative evaluation, it was shown that the addition of Ti reduces the susceptibility of the AlSi5Cu2Mg alloy to hot tearing. A positive refining effect of Ti on the primary α-(Al) phase was demonstrated by microstructural evaluation. Based on this research, it was shown that despite the increase in the solidification interval due to the addition of Ti, the susceptibility of the aluminum alloy to the formation of hot tears is reduced due to the better filling of the material in the interdendritic spaces.

Funder

VEGA

KEGA

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3