Preparation and Characterization of Duplex PEO/UV-Curable Powder Coating on AZ91 Magnesium Alloys

Author:

Florczak Łukasz1ORCID,Pojnar Katarzyna2ORCID,Kościelniak Barbara3ORCID,Pilch-Pitera Barbara4ORCID

Affiliation:

1. Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland

2. Doctoral School of Engineering and Technical Sciences, Rzeszow University of Technology, 35-959 Rzeszow, Poland

3. Department of Materials Science, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland

4. Department of Polymers and Biopolymers, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland

Abstract

Magnesium alloys, because of their excellent strength-to-weight ratio, are increasingly used in many industries. When used in external elements, the key factor is to provide adequate anticorrosion protection. High-temperature, cured-powder coatings are widely used to protect most metals, but their use on magnesium alloys is difficult as a result of the instability of the magnesium substrate at elevated temperatures. Another problem is ensuring the proper adhesion of the organic coating to the magnesium substrate. This paper presents the procedure for the synthesis of a duplex coating on AZ91 magnesium alloy. The topcoat was a powder coating based on acrylic resin, the main ingredient of which was glycidyl methacrylate. Because of the presence of epoxy groups, the coating was cured using ultraviolet (UV) radiation (low-temperature technology). The conversion subcoating was produced by plasma electrolytic oxidation (PEO) in an alkaline silicate electrolyte. The synthesized coating system was tested, among others, for microscopic (SEM), adhesive (mesh of cuts), and anticorrosion (EIS). The duplex PEO/UV-curable powder coating showed very good adhesion to the metal and increased the anticorrosion properties of the magnesium substrate, compared to the powder coating produced directly on the magnesium alloy and on an alternative conversion coating (synthesized in the process of chemical zircon phosphating).

Funder

Rzeszow University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3