Simultaneous Coded Plane-Wave Imaging Using an Advanced Ultrasound Forward Model

Author:

Nicolet FrankORCID,Bujoreanu Denis,Carcreff Ewen,Liebgott Hervé,Friboulet DenisORCID,Nicolas Barbara

Abstract

In the quest for higher acquisition rates of ultrasound images, the simultaneous emission of encoded waves has the potential to overcome the trade-off between acquisition time and image quality. However, the lack of fully orthogonal codes has led to the use of forward models and inverse problem approaches to estimate the imaged medium. Nonetheless, due to some simplifying assumptions on which these models rely, the previously stated trade-off still appears in these acquisition/reconstruction schemes. In this paper, a forward model for ultrasound wave propagation inside a scattering medium is developed for the simultaneous coded emission of plane waves. The tissue reflectivity function of the imaged medium is estimated by solving an ℓ1-regularized version of the corresponding inverse problem. The proposed method is evaluated in silico and in vitro. We demonstrate that this method outperforms the conventional technique that consists of successive emissions of plane waves, reconstruction using delay and sum (DAS), and coherent compounding. In silico, the ability to separate close scatterers is improved by a factor of four in the axial direction and by a factor of 2.5 in the lateral direction. In vitro, the spatial resolution at −6 dB is decreased by a factor of seven. These results suggest that the proposed method could be a valuable tool, particularly for ultrasound imaging of sparse mediums such as in ultrasound localization microscopy.

Funder

the LABEX PRIMES

Université de Lyon, within the program “Investissements d’Avenir”

LabCom Image4US

the LABEX CeLyA

French National Research Agency

ANRT

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference61 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Get Ready to Spy on Ultrasound: Meet ultraspy;2023 IEEE International Ultrasonics Symposium (IUS);2023-09-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3