Spatio-Temporal Prediction of the Epidemic Spread of Dangerous Pathogens Using Machine Learning Methods

Author:

Hamer Wolfgang B.ORCID,Birr Tim,Verreet Joseph-Alexander,Duttmann RainerORCID,Klink Holger

Abstract

Real-time identification of the occurrence of dangerous pathogens is of crucial importance for the rapid execution of countermeasures. For this purpose, spatial and temporal predictions of the spread of such pathogens are indispensable. The R package papros developed by the authors offers an environment in which both spatial and temporal predictions can be made, based on local data using various deterministic, geostatistical regionalisation, and machine learning methods. The approach is presented using the example of a crops infection by fungal pathogens, which can substantially reduce the yield if not treated in good time. The situation is made more difficult by the fact that it is particularly difficult to predict the behaviour of wind-dispersed pathogens, such as powdery mildew (Blumeria graminis f. sp. tritici). To forecast pathogen development and spatial dispersal, a modelling process scheme was developed using the aforementioned R package, which combines regionalisation and machine learning techniques. It enables the prediction of the probability of yield- relevant infestation events for an entire federal state in northern Germany at a daily time scale. To run the models, weather and climate information are required, as is knowledge of the pathogen biology. Once fitted to the pathogen, only weather and climate information are necessary to predict such events, with an overall accuracy of 68% in the case of powdery mildew at a regional scale. Thereby, 91% of the observed powdery mildew events are predicted.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference58 articles.

1. FAOSTAT Pesticides Use fenixservices.fao.org/faostat/static/bulkdownloads/Inputs_Pesticides_Use_E_All_Data.zip

2. DIRECTIVE 2009/128/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 21 October 2009 Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02009L0128-20190726

3. Epidemiologische Simulatoren als Instrumente der Systemanalyse mit Besonderer Berücksichtigung eines Modells des Gerstenmehltaus;Hau,1985

4. Prognose der Infektionswahrscheinlichkeit durch Echten Mehltau an Winterweizen (Erysiphe graminis DC. f. sp. tritici) anhand Meteorologischer Eingangsparameter;Friedrich,1994

5. MIDAS—An Influence Diagram for Management of Mildew in Winter Wheat;Jensen,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3