Comparison of the Dynamic and Thermal Behavior of Different Ideal Flow Crystallizers

Author:

Balogh László1ORCID,Egedy Attila1ORCID,Ulbert Zsolt1,Bárkányi Ágnes1ORCID

Affiliation:

1. Department of Process Engineering, Faculty of Engineering, University of Pannonia, 8200 Veszprém, Hungary

Abstract

In this simulation study, we compare the dynamics and thermal behavior of different ideal flow crystallizers. The first step in creating mathematical models for the crystallizers was the implementation of the population balance equation. The population balance equation was completed with mass balance equations for the solute and the solvent as well as in the case of non-isothermal crystallizers with an energy balance equation. The solution to the population balance equation, which is a partial differential equation, can only be performed numerically. Using the method of moments, which calculates the moments of the population density function, gives a mathematically simpler model for simulating and analyzing the crystallizers. All crystallizers studied are considered mixed suspension and mixed product crystallizers. In this simulation study, the investigated crystallizers are the batch mixed suspension and mixed product isothermal crystallizer, the batch mixed suspension and mixed product non-isothermal crystallizer, and the continuous mixed suspension and mixed product removal (CMSMPR) non-isothermal crystallizer equipped with a cooling jacket. We consider citric acid as the solid material to be crystallized, and a water–glycol system is used as a cooling medium. Considering the nucleation kinetics, we applied both primary and secondary nucleation. In the case of a crystal growth kinetic, we assumed a size-independent growth rate. The highest expected value and the variance of the crystal product occur in the isotherm batch case, which can be explained by the high crystallization rate caused by the high supersaturation. Contrary to this, in the non-isothermal batch case, the final mean particle size and variance are the lowest. In continuous mode, the variance and mean values are between the values obtained in the two other cases. In this case, the supersaturation is maintained at a constant level in the steady state, and the average residence time of the crystal particles also has an important influence on the crystal size distribution. In the case of non-isothermal crystallization, the simulation studies show that the application of the energy balance provides different dynamics for the crystallizers. The implementation of an energy balances into the mathematical model enables the calculation of the thermal behavior of the crystallizers, enabling the model to be used more widely.

Publisher

MDPI AG

Subject

General Energy,General Engineering,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3