Integrated Process for High Phenol Removal from Wastewater Employing a ZnO Nanocatalyst in an Ozonation Reaction in a Packed Bubble Column Reactor

Author:

Majhool Adnan K.1,Sukkar Khalid A.1ORCID,Alsaffar May A.1,Majdi Hasan Shakir2

Affiliation:

1. Department of Chemical Engineering, University of Technology-Iraq, Al-Sanna St., Baghdad 19006, Iraq

2. Chemical and Petroleum Industries Engineering Department, Al-Mustaqbal University, Babylon 51015, Iraq

Abstract

The use of an ozonized bubble column reactor (OBCR) in wastewater treatment is advantageous due to its efficient mixing and mass transfer characteristics. Among all high-performance features, the ozonation reaction in a BCR undergoes a low dissolution of O3 in the reactor with a limited reaction rate. In this study, the ozonation reaction of phenol in an OBCR was tested using a ZnO nanocatalyst and alumina balls as packing material. Three concentrations of O3 were evaluated (i.e., 10, 15, and 20 ppm), and 20 ppm was found to be the optimum concentration for phenol degradation. Also, two doses (i.e., 0.05 and 0.1 g/L) of ZnO nanocatalysts were applied in the reaction mixture, with the optimal dose found to be 0.1 g/L. Accordingly, three phenol concentrations were investigated in the OBCR (i.e., 15, 20, and 25 ppm) using four treatment methods (i.e., O3 alone, O3/Al2O3, O3/ZnO nanocatalyst, and O3/Al2O3/ZnO nanocatalyst). At a contact time of 60 min and phenol concentration of 15 ppm, the removal rate was 66.2, 73.1, 74.5, and 86.8% for each treatment method, respectively. The treatment experiment that applied the O3/Al2O3/ZnO nanocatalyst produced the highest phenol conversion into CO2 and H2O in the shortest contact time for all phenol concentrations. Thus, the OBCR employed with a ZnO nanocatalyst plus packing material is a promising technology for the rapid and active removal of phenol because it enhances the number of hydroxyl radicals (•OH) generated, which ultimately increases the oxidation activity in the OBCR. Also, the results showed efficient flow characteristics in the OBCR, with channeling problems averted due to appropriate gas movement resulting from the use of packing materials. Finally, it was found that the ozonation process in an OBCR is an efficient method for phenol conversion with good economic feasibility.

Publisher

MDPI AG

Subject

General Energy,General Engineering,General Chemical Engineering

Reference52 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3