Simulating Tree Root Water Uptake in the Frame of Sustainable Agriculture for Extreme Hyper-Arid Environments Using Modeling and Geophysical Techniques

Author:

Pradipta Arya1,Kourgialas Nektarios N.2ORCID,Mustafa Yassir Mubarak Hussein3ORCID,Kirmizakis Panagiotis1ORCID,Soupios Pantelis1ORCID

Affiliation:

1. Department of Geosciences, College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

2. Water Resources, Irrigation and Environmental Geoinformatics Laboratory, Institute for Olive Tree, Subtropical Crops and Viticulture, Directorate General of Agricultural Research, Hellenic Agricultural Organization “DIMITRA”, 73100 Chania, Greece

3. Interdisciplinary Research Center for Construction and Building Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Abstract

In order to ensure sustainability in the agricultural sector and to meet global food needs, a particularly important challenge for our time is to investigate the possibility of increasing agricultural production in areas with extreme hyper-arid environments. Warming air temperatures and sandy soils significantly influence tree root water uptake (RWU) dynamics, making accurate estimation of RWU depth distribution and magnitude crucial for effective resource management, particularly in the context of precision irrigation within agroecosystems. This study employed two non-invasive techniques, namely HYDRUS 1D and electrical resistivity tomography (ERT), to simulate RWU under controlled experimental conditions and under an extreme hyper-arid environment. The results revealed that the highest RWU rates occurred during the morning (08:00–11:00). RWU activity predominantly concentrated in the upper soil profile (0–30 cm), and the soil water content in this area was notably lower compared to the deeper soil layers. With increasing temperature, there was a tendency for the RWU zone to shift to lower depths within the soil profile. The findings of this study could have important implications for farmers, providing valuable insights to implement irrigation water management strategies.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3