Anti-Tumor Activity of Novel Nimotuzumab-Functionalized Gold Nanoparticles as a Potential Immunotherapeutic Agent against Skin and Lung Cancers

Author:

Anisuzzman Mohammad1,Komalla Varsha1,Tarkistani Mariam Abdulaziz M.1ORCID,Kayser Veysel1ORCID

Affiliation:

1. Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia

Abstract

The epidermal growth factor receptor (EGFR) is vital for many different types of cancer. Nimotuzumab (NmAb), an anti-EGFR monoclonal antibody (mAb), is used against some of EGFR-overexpressed cancers in various countries. It targets malignant cells and is internalized via receptor-mediated endocytosis. We hypothesized that mAb-nanoparticle conjugation would provide an enhanced therapeutic efficacy, and hence we conjugated NmAb with 27 nm spherical gold nanoparticles (AuNPs) to form AuNP-NmAb nanoconjugates. Using biophysical and spectroscopic methods, including ultraviolet-visible spectroscopy (UV-Vis), transmission electron microscopy (TEM), dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and Fourier-transform infrared spectroscopy (FTIR), the AuNP-NmAb complex was characterized. Furthermore, in vitro studies were performed using a medium-level EGFR-expressing skin cancer cell (A431, EGFRmedium) and low-level EGFR-expressing lung cancer cell (A549, EGFRlow) to evaluate anti-tumor and cellular uptake efficiency via MTT assay and single-particle inductively coupled plasma mass spectrometry (spICP-MS), respectively. In comparison to NmAb monotherapy, the AuNP-NmAb treatment drastically reduced cancer cell survivability: for A431 cells, the IC50 value of AuNP-NmAb conjugate was 142.7 µg/mL, while the IC50 value of free NmAb was 561.3 µg/mL. For A549 cells, the IC50 value of the AuNP-NmAb conjugate was 163.6 µg/mL, while the IC50 value of free NmAb was 1,082.0 µg/mL. Therefore, this study highlights the unique therapeutic potential of AuNP-NmAb in EGFR+ cancers and shows the potential to develop other mAb nanoparticle complexes for a superior therapeutic efficacy.

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3