Identification and Analysis of a Four-Gene Set for Diagnosing SFTS Virus Infection Based on Machine Learning Methods and Its Association with Immune Cell Infiltration

Author:

Huang Tao1ORCID,Wang Xueqi2,Mi Yuqian3,Liu Tiezhu1,Li Yang4,Zhang Ruixue1,Qian Zhen1,Wen Yanhan1,Li Boyang1,Sun Lina1,Wu Wei1,Li Jiandong1,Wang Shiwen1,Liang Mifang1

Affiliation:

1. National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China

2. Capital Institute of Pediatrics, Beijing 100020, China

3. Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China

4. Chongqing Research Institute of Big Data, Peking University, Chongqing 400039, China

Abstract

Severe Fever with thrombocytopenia syndrome (SFTS) is a highly fatal viral infectious disease that poses a significant threat to public health. Currently, the phase and pathogenesis of SFTS are not well understood, and there are no specific vaccines or effective treatment available. Therefore, it is crucial to identify biomarkers for diagnosing acute SFTS, which has a high mortality rate. In this study, we conducted differentially expressed genes (DEGs) analysis and WGCNA module analysis on the GSE144358 dataset, comparing the acute phase of SFTSV-infected patients with healthy individuals. Through the LASSO–Cox and random forest algorithms, a total of 2128 genes were analyzed, leading to the identification of four genes: ADIPOR1, CENPO, E2F2, and H2AC17. The GSEA analysis of these four genes demonstrated a significant correlation with immune cell function and cell cycle, aligning with the functional enrichment findings of DEGs. Furthermore, we also utilized CIBERSORT to analyze the immune cell infiltration and its correlation with characteristic genes. The results indicate that the combination of ADIPOR1, CENPO, E2F2, and H2AC17 genes has the potential as characteristic genes for diagnosing and studying the acute phase of SFTS virus (SFTSV) infection.

Funder

screening and functional validation of prognostic biomarkers in SFTS

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3