Intra-Individual Comparison of Sinus and Ectopic Beats Probing the Ventricular Gradient’s Activation Dependence

Author:

Schoonderwoerd Resi M.1,Dik Mariëlle1,Man Sumche1,Maan Arie C.1,Jukema J. Wouter12,Swenne Cees A.1ORCID

Affiliation:

1. Cardiology Department, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands

2. Netherlands Heart Institute, Moreelsepark 1, 3511 EP Utrecht, The Netherlands

Abstract

Wilson assumed that the ventricular gradient (VG) is independent of the ventricular activation order. This paradigm has often been refuted and was never convincingly corroborated. We sought to validate Wilson’s concept by intra-individual comparison of the VG of sinus beats and ectopic beats, thus assessing the effects of both altered ventricular conduction (caused by the ectopic focus) and restitution (caused by ectopic prematurity). We studied standard diagnostic ECGs of 118 patients with accidental extrasystoles: normally conducted supraventricular ectopic beats (SN, N = 6) and aberrantly conducted supraventricular ectopic beats (SA, N = 20) or ventricular ectopic beats (V, N = 92). In each patient, we computed the VG vectors of the predominant beat, VGp→, of the ectopic beat, VGe→, and of the VG difference vector, ΔVGep→, and compared their sizes. VGe→ of the SA and V ectopic beats were significantly larger than VGp→ (53.7 ± 25.0 vs. 47.8 ± 24.6 mV∙ms, respectively; p < 0.001). ΔVGep→ were three times larger than the difference of VGe→ and VGp→ (19.94 ± 9.76 vs. 5.94 mV∙ms, respectively), demonstrating differences in the VGp→ and VGe→ spatial directions. The amount of ectopic prematurity was not correlated with ΔVGep→, although the larger VG difference vectors were observed for the more premature (<80%) extrasystoles. Electrical restitution properties and electrotonic interactions likely explain our findings. We conclude that the concept of a conduction-independent VG should be tested at equal heart rates and without including premature extrasystoles.

Publisher

MDPI AG

Subject

Pharmacology (medical),General Pharmacology, Toxicology and Pharmaceutics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3