Experimental Study on Upstream Water Level Rise of Submerged Rock Weirs

Author:

Zhang Wen12ORCID,Liu Xingnian3,Gan Binrui12

Affiliation:

1. Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China

2. College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China

3. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China

Abstract

Rock weirs, typically created by the placement of loose rocks, are eco-friendly hydraulic structures used for raising the upstream water level, which has benefits for irrigation, shipping, and grade control. Although rock weirs are frequently submerged in rivers, few studies have systematically investigated their impacts on the upstream water level under submerged conditions. A series of flume experiments regarding this topic were conducted. Different flow discharges, tail-water depths, and void ratios were adopted in the experiments. The results show that (1) the submerged rock weirs primarily function to raise the upstream water level, while having a limited impact on the tail-water level; (2) for a given tail-water depth and void ratio, the upstream water level rise increases with increased discharge, although this response becomes insignificant as tail-water depth increases; (3) as void ratio increases, the upstream water level rise is expected to decrease for a given tail-water depth and discharge; and (4) based on the data and observations, a predictor including the effects of Froude number, submergence, and void ratio is proposed for estimating the upstream water level rise of submerged rock weirs. These results contribute to further understanding the hydraulic properties of rock weirs and are important for river training practices using rock weirs.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Chongqing Natural Science Foundation Postdoctoral Science Fund

Science and Technology Research Program of Chongqing Municipal Education Commission

Open Fund of Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University

Open Fund of State Key Laboratory of Hydraulics and Mountain River Engineering

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3