The Effects of Intermittent Cold Exposure on Adipose Tissue

Author:

Scott Matthew C.1,Fuller Scott2

Affiliation:

1. Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA

2. School of Kinesiology, University of Louisiana at Lafayette, Lafayette, LA 70506, USA

Abstract

Intermittent cold exposure (ICE) has garnered increased attention in popular culture, largely for its proposed effects on mood and immune function, but there are also suggestions that the energy-wasting mechanisms associated with thermogenesis may decrease body weight and fat mass. Considering the continued and worsening prevalence of obesity and type II diabetes, any protocol that can reduce body weight and/or improve metabolic health would be a substantial boon. Here, we present a narrative review exploring the research related to ICE and adipose tissue. Any publicly available original research examining the effects of repeated bouts of ICE on adipose-related outcomes was included. While ICE does not consistently lower body weight or fat mass, there does seem to be evidence for ICE as a positive modulator of the metabolic consequences of obesity, such as glucose tolerance and insulin signaling. Further, ICE consistently increases the activity of brown adipose tissue (BAT) and transitions white adipose tissue to a phenotype more in line with BAT. Lastly, the combined effects of ICE and exercise do not seem to provide any additional benefit, at least when exercising during ICE bouts. The majority of the current literature on ICE is based on rodent models where animals are housed in cold rooms, which does not reflect protocols likely to be implemented in humans such as cold water immersion. Future research could specifically characterize ICE via cold water immersion in combination with controlled calorie intake to clearly determine the effects of ICE as it would be implemented in humans looking to lower their body weight via reductions in fat mass.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3