Integrated Transcriptomic and Metabolomic Analyses Identify Critical Genes and Metabolites Associated with Seed Vigor of Common Wheat

Author:

Yang Zhenrong1,Chen Weiguo2,Jia Tianxiang1,Shi Huawei1,Sun Daizhen1

Affiliation:

1. College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China

2. College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China

Abstract

Seed aging is a common physiological phenomenon during storage which has a great impact on seed quality. An in-depth analysis of the physiological and molecular mechanisms of wheat seed aging is of great significance for cultivating high-vigor wheat varieties. This study reveals the physiological mechanisms of wheat seed aging in two cultivars differing in seed vigor, combining metabolome and transcriptome analyses. Differences between cultivars were examined based on metabolomic differential analysis. Artificial aging had a significant impact on the metabolism of wheat seeds. A total of 7470 (3641 upregulated and 3829 downregulated) DEGs were detected between non-aging HT and LT seeds; however, 10,648 (4506 up and 6142 down) were detected between the two cultivars after aging treatment. Eleven, eight, and four key metabolic-related gene families were identified in the glycolysis/gluconeogenesis and TCA cycle pathways, starch and sucrose metabolism pathways, and galactose metabolism pathways, respectively. In addition, 111 up-regulated transcription factor genes and 85 down-regulated transcription factor genes were identified in the LT 48h group. A total of 548 metabolites were detected across all samples. Cultivar comparisons between the non-aged groups and aged groups revealed 46 (30 upregulated and 16 downregulated) and 62 (38 upregulated and 24 downregulated) DIMs, respectively. Network analysis of the metabolites indicated that glucarate O-phosphoric acid, L-methionine sulfoxide, isocitric acid, and Gln-Gly might be the most crucial DIMs between HT and LT. The main related metabolites were enriched in pathways such as glyoxylate and dicarboxylate metabolism, biosynthesis of secondary metabolites, fatty acid degradation, etc. However, metabolites that exhibited differences between cultivars were mainly enriched in carbon metabolism, the TCA cycle, etc. Through combined metabolome and transcriptome analyses, it was found that artificial aging significantly affected glycolysis/gluconeogenesis, pyruvate metabolism, and glyoxylate and dicarboxylate metabolism, which involved key genes such as ACS, F16P2, and PPDK1. We thus speculate that these genes may be crucial in regulating physiological changes in seeds during artificial aging. In addition, an analysis of cultivar differences identified pathways related to amino acid and polypeptide metabolism, such as cysteine and methionine metabolism, glutathione metabolism, and amino sugar and nucleotide sugar metabolism, involving key genes such as BCAT3, CHI1, GAUT1, and GAUT4, which may play pivotal roles in vigor differences between cultivars.

Funder

Key Research and Development Program Project in Shanxi Province

Science and Technology Innovation Foundation of Shanxi Agricultural University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3