Whispers in the Blood: Leveraging MicroRNAs for Unveiling Autologous Blood Doping in Athletes

Author:

Hassanpour Mehdi1ORCID,Salybekov Amankeldi A.1ORCID

Affiliation:

1. Qazaq Institute of Innovative Medicine, Regenerative Medicine Division, Cell and Gene Therapy Department, Astana 020000, Kazakhstan

Abstract

The prevalence of autologous blood transfusions (ABTs) presents a formidable challenge in maintaining fair competition in sports, as it significantly enhances hemoglobin mass and oxygen capacity. In recognizing ABT as a prohibited form of doping, the World Anti-Doping Agency (WADA) mandates stringent detection methodologies. While current methods effectively identify homologous erythrocyte transfusions, a critical gap persists in detecting autologous transfusions. The gold standard practice of longitudinally monitoring hematological markers exhibits promise but is encumbered by limitations. Despite its potential, instances of blood doping often go undetected due to the absence of definitive verification processes. Moreover, some cases remain unpenalized due to conservative athlete-sanctioning approaches. This gap underscores the imperative need for a more reliable and comprehensive detection method capable of unequivocally differentiating autologous transfusions, addressing the challenges faced in accurately identifying such prohibited practices. The development of an advanced detection methodology is crucial to uphold the integrity of anti-doping measures, effectively identifying and penalizing instances of autologous blood transfusion. This, in turn, safeguards the fairness and equality essential to competitive sports. Our review tackles this critical gap by harnessing the potential of microRNAs in ABT doping detection. We aim to summarize alterations in the total microRNA profiles of erythrocyte concentrates during storage and explore the viability of observing these changes post-transfusion. This innovative approach opens avenues for anti-doping technologies and commercialization, positioning it as a cornerstone in the ongoing fight against doping in sports and beyond. The significance of developing a robust detection method cannot be overstated, as it ensures the credibility of anti-doping efforts and promotes a level playing field for all athletes.

Funder

Qazaq Institute of Innovative Medicine Research Promotion Aid

Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference85 articles.

1. Doping with artificial oxygen carriers: An update;Schumacher;Sports Med.,2004

2. History of doping in sport;Yesalis;Int. Sports Stud.,2002

3. Mazanov, J., and McDermott, V. (2013). Towards a Social Science of Drugs in Sport, Routledge.

4. Dimeo, P. (2008). A history of Drug Use in Sport: 1876–1976: Beyond Good and Evil, Routledge.

5. Spitzer, G. (2006). Doping and Doping Control in Europe: Performance Enhancing Drugs, Elite Sports and Leisure Time Sport in Denmark, Great Britain, East and West Germany, Poland, France, Italy, Meyer & Meyer (Verlag).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3