Non-Genetic-Induced Zebrafish Model for Type 2 Diabetes with Emphasis on Tools in Model Validation

Author:

Sanni Olakunle1,Fasemore Thandi1,Nkomozepi Pilani1

Affiliation:

1. Department of Human Anatomy and Physiology, University of Johannesburg, Doornfontein 2028, South Africa

Abstract

The unrelenting increase in the incidence of type 2 diabetes (T2D) necessitates the urgent need for effective animal models to mimic its pathophysiology. Zebrafish possess human-like metabolic traits and share significant genetic similarities, making them valuable candidates for studying metabolic disorders, including T2D. This review emphasizes the critical role of animal models in diabetes research, especially focusing on zebrafish as an alternative model organism. Different approaches to a non-genetic model of T2D in zebrafish, such as the glucose solution, diet-induced, chemical-induced, and combined diet-induced and glucose solution methods, with an emphasis on model validation using indicators of T2D, were highlighted. However, a significant drawback lies in the validation of these models. Some of these models have not extensively demonstrated persistent hyperglycemia or response to insulin resistance and glucose tolerance tests, depicted the morphology of the pancreatic β-cell, or showed their response to antidiabetic drugs. These tools are crucial in T2D pathology. Future research on non-genetic models of T2D in zebrafish must extensively focus on validating the metabolic deficits existing in the model with the same metabolic defects in humans and improve on the existing models for a better understanding of the molecular mechanisms underlying T2D and exploring potential therapeutic interventions.

Funder

National Research Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3