Chronic Glaucoma Induced in Rats by a Single Injection of Fibronectin-Loaded PLGA Microspheres: IOP-Dependent and IOP-Independent Neurodegeneration

Author:

Munuera Ines1,Aragon-Navas Alba2ORCID,Villacampa Pilar3,Gonzalez-Cela Miriam A.2,Subías Manuel14ORCID,Pablo Luis E.145,Garcia-Feijoo Julian56,Herrero-Vanrell Rocio25,Garcia-Martin Elena15,Bravo-Osuna Irene25ORCID,Rodrigo Maria J.15ORCID

Affiliation:

1. Department of Ophthalmology, Miguel Servet University Hospital, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain

2. Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain

3. Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), Feixa Llarga s/n, 08907 l’Hospitalet de Llobregat, Spain

4. Biotech Vision SLP (Spin-Off Company), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain

5. Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain

6. Department of Ophthalmology, San Carlos Clinical Hospital, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain

Abstract

To evaluate a new animal model of chronic glaucoma induced using a single injection of fibronectin-loaded biodegradable PLGA microspheres (Ms) to test prolonged therapies. 30 rats received a single injection of fibronectin-PLGA-Ms suspension (MsF) in the right eye, 10 received non-loaded PLGA-Ms suspension (Control), and 17 were non-injected (Healthy). Follow-up was performed (24 weeks), evaluating intraocular pressure (IOP), optical coherence tomography (OCT), histology and electroretinography. The right eyes underwent a progressive increase in IOP, but only induced cohorts reached hypertensive values. The three cohorts presented a progressive decrease in ganglion cell layer (GCL) thickness, corroborating physiological age-related loss of ganglion cells. Injected cohorts (MsF > Control) presented greater final GCL thickness. Histological exams explain this paradox: the MsF cohort showed lower ganglion cell counts but higher astrogliosis and immune response. A sequential trend of functional damage was recorded using scotopic electroretinography (MsF > Control > Healthy). It seems to be a function–structure correlation: in significant astrogliosis, early functional damage can be detected by electroretinography, and structural damage can be detected by histological exams but not by OCT. Males presented higher IOP and retinal and GCL thicknesses and lower electroretinography. A minimally invasive chronic glaucoma model was induced by a single injection of biodegradable Ms.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3