The Mechanism of Hepatic Encephalopathy Induced by Thioacetamide Based on Metabolomics and Proteomics: A Preliminary Study

Author:

Guo Honghui123,Wang Guang4,Huang Wei123,Li Lingrui123,Bai Yang123,Wang Haifeng123,Gao Lina123ORCID

Affiliation:

1. Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China

2. China Medical University Center of Forensic Investigation, Shenyang 110122, China

3. Department of Forensic Analytical Toxicology, China Medical University, Shenyang 110122, China

4. Department of Laboratory Animal Science, China Medical University, Shenyang 110122, China

Abstract

Hepatic encephalopathy (HE) is a central nervous system dysfunction syndrome caused by acute and chronic liver failure or various portal systemic shunt disorders. HE arises from metabolic disorder and excludes other known types of encephalopathy. HE is a major cause of death in people with liver disease. Early diagnosis and timely treatment are key to improving HE prognosis. Herein, we established a model of HE and performed metabolomics to identify 50 significantly differential metabolites between the HE group and control group. The main metabolic pathways associated with these differential metabolites were the purine metabolism, pyrimidine metabolism, aminoacyl tRNA biosynthesis, and glucose metabolism. Through proteomics analysis, we identified 226 significantly differential proteins (52 up-regulated and 174 down-regulated). The main (Kyoto Encyclopedia of Genes and Genomes) enrichment pathways were the Staphylococcus aureus infection, vitamin digestion and absorption, and complement and coagulation cascades. Through the conjoint analysis of proteomics and metabolomics, the differentially present proteins and metabolites were found to be involved in vitamin digestion and absorption, and ferroptosis pathways. In HE, malondialdehyde was significantly elevated, but glutathione was significantly diminished, and the redox balance was destroyed, thus leading to changes in proteins’ levels associated with the ferroptosis pathway. In conclusion, this study preliminarily explored the molecular and metabolic mechanisms underlying HE.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3