The Targeted Regulation of BDUbc and BDSKL1 Enhances Resistance to Blight in Bambusa pervariabilis × Dendrocalamopsis grandis

Author:

Yan Peng1,Wang Yisi1,Yu Cailin1,Piao Jingmei1,Li Shuying1,Liu Yinggao1,Li Shujiang12ORCID

Affiliation:

1. College of Forestry, Sichuan Agricultural University, Chengdu 611130, China

2. National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu 611130, China

Abstract

Arthrinium phaeospermum is the major pathogen responsible for the significant stem disease “blight” in B. pervariabilis × D. grandis. The interacting proteins of the key pathogenic factor ApCtf1β, BDUbc and BDSKL1, have previously been obtained by two-hybrid, BiFC, GST pull-down yeast assays. However, the functions of these interacting proteins remain unknown. This study successfully obtained transgenic plants overexpressing BDUbc, BDSKL1, and BDUbc + BDSKL1 via Agrobacterium-mediated gene overexpression. qRT-PCR analysis revealed significantly increased expression levels of BDUbc and BDSKL1 in the transgenic plants. After infection with the pathogenic spore suspension, the disease incidence and severity index significantly decreased across all three transgenic plants, accompanied by a marked increase in defense enzyme levels. Notably, the co-transformed plant, OE-BDUbc + BDSKL1, demonstrated the lowest disease incidence and severity index among the transgenic variants. These results not only indicate that BDUbc and BDSKL1 are disease-resistant genes, but also that these two genes may exhibit a synergistic enhancement effect, which further improves the resistance to blight in Bambusa pervariabilis × Dendrocalamopsis grandis.

Funder

National Natural Science Foundation of China

Sichuan Natural Science Foundation for Distinguished Young Scholar

Innovation Training Program for College Students

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3