Binding Free Energy Calculation Based on the Fragment Molecular Orbital Method and Its Application in Designing Novel SHP-2 Allosteric Inhibitors

Author:

Yuan Zhen1ORCID,Chen Xingyu1,Fan Sisi1,Chang Longfeng1,Chu Linna1,Zhang Ying1,Wang Jie1,Li Shuang1,Xie Jinxin1,Hu Jianguo1,Miao Runyu1,Zhu Lili1,Zhao Zhenjiang1,Li Honglin123,Li Shiliang12ORCID

Affiliation:

1. Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China

2. Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai 200062, China

3. Lingang Laboratory, Shanghai 200031, China

Abstract

The accurate prediction of binding free energy is a major challenge in structure-based drug design. Quantum mechanics (QM)-based approaches show promising potential in predicting ligand–protein binding affinity by accurately describing the behavior and structure of electrons. However, traditional QM calculations face computational limitations, hindering their practical application in drug design. Nevertheless, the fragment molecular orbital (FMO) method has gained widespread application in drug design due to its ability to reduce computational costs and achieve efficient ab initio QM calculations. Although the FMO method has demonstrated its reliability in calculating the gas phase potential energy, the binding of proteins and ligands also involves other contributing energy terms, such as solvent effects, the ‘deformation energy’ of a ligand’s bioactive conformations, and entropy. Particularly in cases involving ionized fragments, the calculation of solvation free energy becomes particularly crucial. We conducted an evaluation of some previously reported implicit solvent methods on the same data set to assess their potential for improving the performance of the FMO method. Herein, we develop a new QM-based binding free energy calculation method called FMOScore, which enhances the performance of the FMO method. The FMOScore method incorporates linear fitting of various terms, including gas-phase potential energy, deformation energy, and solvation free energy. Compared to other widely used traditional prediction methods such as FEP+, MM/PBSA, MM/GBSA, and Autodock vina, FMOScore showed good performance in prediction accuracies. By constructing a retrospective case study, it was observed that incorporating calculations for solvation free energy and deformation energy can further enhance the precision of FMO predictions for binding affinity. Furthermore, using FMOScore-guided lead optimization against Src homology-2-containing protein tyrosine phosphatase 2 (SHP-2), we discovered a novel and potent allosteric SHP-2 inhibitor (compound 8).

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Lingang Laboratory

Fundamental Research Funds for the Central Universities

Shanghai Rising-Star Program

National Program for Special Supports of Eminent Professionals and the National Program for Support of Top-Notch Young Professionals

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3