Contribution of Signal Transducer and Activator of Transcription 3 (STAT3) to Bone Development and Repair

Author:

Sobah Mohamed L.1,Liongue Clifford2ORCID,Ward Alister C.2ORCID

Affiliation:

1. School of Medicine, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia

2. Institute of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia

Abstract

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor activated canonically by numerous cytokines and other factors, with significant roles in immunity, immune diseases, and cancer. It has also been implicated in several human skeletal disorders, with loss-of-function (LOF) mutations associated with aberrant skeletal development. To gain further insights, two zebrafish STAT3 lines were investigated: a complete LOF knockout (KO) mutant and a partial LOF mutant with the transactivation domain truncated (ΔTAD). Consistent with other studies, the KO mutants were smaller, with reduced length in early embryos exacerbated by a decreased growth rate from 5 days postfertilization (dpf). They displayed skeletal deformities that approached 80% incidence by 30 dpf, with a significant reduction in early bone but not cartilage formation. Further analysis additionally identified considerable abrogation of caudal fin regeneration, concomitant with a paucity of infiltrating macrophages and neutrophils, which may be responsible for this. Most of these phenotypes were also observed in the ΔTAD mutants, indicating that loss of canonical STAT3 signaling was the likely cause. However, the impacts on early bone formation and regeneration were muted in the ΔTAD mutant, suggesting the potential involvement of noncanonical functions in these processes.

Funder

Deakin University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3