Cell-Surface GRP78-Targeted Chimeric Antigen Receptor T Cells Eliminate Lung Cancer Tumor Xenografts

Author:

Wang Shijie1,Wei Wenwen1,Yuan Yuncang1,Guo Jing1,Liang Dandan1,Zhao Xudong1

Affiliation:

1. Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China

Abstract

Lung cancer is one of the most common and intractable malignancies. It is associated with low survival rates despite existing treatments, indicating that new and more effective therapies are urgently needed such as the chimeric antigen receptor-T (CAR-T) cell immunotherapy. The cell-surface glucose-regulated protein 78 (csGRP78) is expressed in various hematological malignancies and solid tumor cells including lung cancer in response to cancer-related endoplasmic reticulum stress, while GRP78 is restricted to inside the normal cells. Here, we detected the prominent expression of csGRP78 in both lung cancer cell lines, A549 and H1299, as well as cancer stemlike cells derived from A549 by immunofluorescence. Next, a csGRP78-targeted CAR was constructed, and the transduced CAR-T cells were tested for their potency to kill the two lung cancer cell lines and derived stemlike cells, which was correlated with specific interferon γ release in vitro. Finally, we found that csGRP78 CAR-T cells also efficiently killed both lung cancer cells and cancer stemlike cells, resulting into the elimination of tumor xenografts in vivo, neither with any evidence of relapse after 63 days of tumor clearance nor any detrimental impact on other body organs we examined. Our study reveals the capacity of csGRP78 as a therapeutic target and offers valuable insight into the development of csGRP78 CAR-T cells as potential therapy for lung cancer.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3