Investigating the Mitoprotective Effects of S1P Receptor Modulators Ex Vivo Using a Novel Semi-Automated Live Imaging Set-Up

Author:

Ludwig Rebecca123ORCID,Malla Bimala123ORCID,Höhrhan Maria24,Infante-Duarte Carmen123ORCID,Anderhalten Lina123

Affiliation:

1. Experimental and Clinical Research Center (ECRC), 13125 Berlin, Germany

2. Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany

3. Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany

4. Institute for Medical Immunology, 13353 Berlin, Germany

Abstract

In multiple sclerosis (MS), mitochondrial alterations appear to contribute to disease progression. The sphingosine-1-phosphate receptor modulator siponimod is approved for treating secondary progressive MS. Its preceding compound fingolimod was shown to prevent oxidative stress-induced alterations in mitochondrial morphology. Here, we assessed the effects of siponimod, compared to fingolimod, on neuronal mitochondria in oxidatively stressed hippocampal slices. We have also advanced the model of chronic organotypic hippocampal slices for live imaging, enabling semi-automated monitoring of mitochondrial alterations. The slices were prepared from B6.Cg-Tg(Thy1-CFP/COX8A)S2Lich/J mice that display fluorescent neuronal mitochondria. They were treated with hydrogen peroxide (oxidative stress paradigm) ± 1 nM siponimod or fingolimod for 24 h. Afterwards, mitochondrial dynamics were investigated. Under oxidative stress, the fraction of motile mitochondria decreased and mitochondria were shorter, smaller, and covered smaller distances. Siponimod partly prevented oxidatively induced alterations in mitochondrial morphology; for fingolimod, a similar trend was observed. Siponimod reduced the decrease in mitochondrial track displacement, while both compounds significantly increased track speed and preserved motility. The novel established imaging and analysis tools are suitable for assessing the dynamics of neuronal mitochondria ex vivo. Using these approaches, we showed that siponimod at 1 nM partially prevented oxidatively induced mitochondrial alterations in chronic brain slices.

Funder

Novartis Pharma GmbH

Hertie Foundation

Berlin Institute of Health

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3