Peripheral Branch Injury Induces Oxytocin Receptor Expression at the Central Axon Terminals of Primary Sensory Neurons

Author:

El Heni Heni1,Kemenesi-Gedei Péter Bátor1,Pálvölgyi Laura1,Kozma-Szeredi Ivett Dorina1,Kis Gyöngyi12

Affiliation:

1. Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary

2. Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary

Abstract

Considerable evidence suggests that oxytocin, as a regulatory nonapeptide, participates in modulatory mechanisms of nociception. Nonetheless, the role of this hypothalamic hormone and its receptor in the sensory pathway has yet to be fully explored. The present study performed immunohistochemistry, enzyme-linked immunosorbent assay, and RT-qPCR analysis to assess changes in the expression of the neuronal oxytocin receptor in female rats following tight ligation of the sciatic nerve after 1, 3, and 7 days of survival. Oxytocin receptor immunoreactivity was present in both dorsal root ganglia and lumbar spinal cord segments, but not accumulated at the site of the ligation of the peripheral nerve branch. We found a time-dependent change in the expression of oxytocin receptor mRNA in L5 dorsal root ganglion neurons, as well as an increase in the level of the receptor protein in the lumbar segment of the spinal cord. A peak in the expression was observed on day 3, which downturned slightly by day 7 after the nerve ligation. These results show that OTR expression is up-regulated in response to peripheral nerve lesions. We assume that the importance of OTR is to modify spinal presynaptic inputs of the sensory neurons upon injury-induced activation, thus to be targets of the descending oxytocinergic neurons from supraspinal levels. The findings of this study support the concept that oxytocin plays a role in somatosensory transmission.

Funder

Economic Development and Innovation Operational Programme

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3