Results Obtained from a Pivotal Validation Trial of a Microsatellite Analysis (MSA) Assay for Bladder Cancer Detection through a Statistical Approach Using a Four-Stage Pipeline of Modern Machine Learning Techniques

Author:

Reynolds Thomas1ORCID,Riddick Gregory1,Meyers Gregory1,Gordon Maxie23,Flores Monar Gabriela Vanessa2,Moon David2,Moon Chulso234ORCID

Affiliation:

1. NEXT Bio-Research Services, LLC, 11601 Ironbridge Road, Suite 101, Chester, VA 23831, USA

2. HJM Cancer Research Foundation Corporation, 10606 Candlewick Road, Lutherville, MD 21093, USA

3. BCD Innovations USA, 10606 Candlewick Road, Lutherville, MD 21093, USA

4. Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institution, Cancer Research Building II, 5M3, 1550 Orleans Street, Baltimore, MD 21205, USA

Abstract

Several studies have shown that microsatellite changes can be profiled in urine for the detection of bladder cancer. The use of microsatellite analysis (MSA) for bladder cancer detection requires a comprehensive analysis of as many as 15 to 20 markers, based on the amplification and interpretations of many individual MSA markers, and it can be technically challenging. Here, to develop fast, more efficient, standardized, and less costly MSA for the detection of bladder cancer, we developed three multiplex-polymerase-chain-reaction-(PCR)-based MSA assays, all of which were analyzed via a genetic analyzer. First, we selected 16 MSA markers based on 9 selected publications. Based on samples from Johns Hopkins University (the JHU sample, the first set sample), we developed an MSA based on triplet, three-tube-based multiplex PCR (a Triplet MSA assay). The discovery, validation, and translation of biomarkers for the early detection of cancer are the primary focuses of the Early Detection Research Network (EDRN), an initiative of the National Cancer Institute (NCI). A prospective study sponsored by the EDRN was undertaken to determine the efficacy of a novel set of MSA markers for the early detection of bladder cancer. This work and data analysis were performed through a collaboration between academics and industry partners. In the current study, we undertook a re-analysis of the primary data from the Compass study to enhance the predictive power of the dataset in bladder cancer diagnosis. Using a four-stage pipeline of modern machine learning techniques, including outlier removal with a nonlinear model, correcting for majority/minority class imbalance, feature engineering, and the use of a model-derived variable importance measure to select predictors, we were able to increase the utility of the original dataset to predict the occurrence of bladder cancer. The results of this analysis showed an increase in accuracy (85%), sensitivity (82%), and specificity (83%) compared to the original analysis. The re-analysis of the EDRN study results using machine learning statistical analysis proved to achieve an appropriate level of accuracy, sensitivity, and specificity to support the use of the MSA for bladder cancer detection and monitoring. This assay can be a significant addition to the tools urologists use to both detect primary bladder cancers and monitor recurrent bladder cancer.

Funder

Pyung-Ya Foundation and HJM Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3