Comparative Evaluation of STEAP1 Targeting Chimeric Antigen Receptors with Different Costimulatory Domains and Spacers

Author:

Jin Yixin1,Dunn Claire1,Persiconi Irene1ORCID,Sike Adam1,Skorstad Gjertrud2,Beck Carole1ORCID,Kyte Jon Amund123ORCID

Affiliation:

1. Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway

2. Department of Clinical Cancer Research, Oslo University Hospital, 0424 Oslo, Norway

3. Faculty of Health Sciences, Oslo Metropolitan University, 0130 Oslo, Norway

Abstract

We have developed a chimeric antigen receptor (CAR) against the six-transmembrane epithelial antigen of prostate-1 (STEAP1), which is expressed in prostate cancer, Ewing sarcoma, and other malignancies. In the present study, we investigated the effect of substituting costimulatory domains and spacers in this STEAP1 CAR. We cloned four CAR constructs with either CD28 or 4-1BB costimulatory domains, combined with a CD8a-spacer (sp) or a mutated IgG-spacer. The CAR T-cells were evaluated in short- and long-term in vitro T-cell assays, measuring cytokine production, tumor cell killing, and CAR T-cell expansion and phenotype. A xenograft mouse model of prostate cancer was used for in vivo comparison. All four CAR constructs conferred CD4+ and CD8+ T cells with STEAP1-specific functionality. A CD8sp_41BBz construct and an IgGsp_CD28z construct were selected for a more extensive comparison. The IgGsp_CD28z CAR gave stronger cytokine responses and killing in overnight caspase assays. However, the 41BB-containing CAR mediated more killing (IncuCyte) over one week. Upon six repeated stimulations, the CD8sp_41BBz CAR T cells showed superior expansion and lower expression of exhaustion markers (PD1, LAG3, TIGIT, TIM3, and CD25). In vivo, both the CAR T variants had comparable anti-tumor activity, but persisting CAR T-cells in tumors were only detected for the 41BBz variant. In conclusion, the CD8sp_41BBz STEAP1 CAR T cells had superior expansion and survival in vitro and in vivo, compared to the IgGsp_CD28z counterpart, and a less exhausted phenotype upon repeated antigen exposure. Such persistence may be important for clinical efficacy.

Funder

Norwegian Cancer Society

Novo Seeds

South-Eastern Norway Regional Health Authority

Oslo University Hospital

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3