Genome-Wide Identification and Expression Analysis of Chitinase Genes in Watermelon under Abiotic Stimuli and Fusarium oxysporum Infection

Author:

Xuan Changqing1,Feng Mengjiao1,Li Xin1,Hou Yinjie1,Wei Chunhua1ORCID,Zhang Xian12

Affiliation:

1. State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China

2. State Key Laboratory of Vegetable Germplasm Innovation, Tianjin 300384, China

Abstract

Chitinases, which catalyze the hydrolysis of chitin, the primary components of fungal cell walls, play key roles in defense responses, symbiotic associations, plant growth, and stress tolerance. In this study, 23 chitinase genes were identified in watermelon (Citrullus lanatus [Thunb.]) and classified into five classes through homology search and phylogenetic analysis. The genes with similar exon-intron structures and conserved domains were clustered into the same class. The putative cis-elements involved in the responses to phytohormone, stress, and plant development were identified in their promoter regions. A tissue-specific expression analysis showed that the ClChi genes were primarily expressed in the roots (52.17%), leaves (26.09%), and flowers (34.78%). Moreover, qRT-PCR results indicate that ClChis play multifaceted roles in the interaction between plant/environment. More ClChi members were induced by Race 2 of Fusarium oxysporum f. sp. niveum, and eight genes were expressed at higher levels on the seventh day after inoculation with Races 1 and 2, suggesting that these genes play a key role in the resistance of watermelon to Fusarium wilt. Collectively, these results improve knowledge of the chitinase gene family in watermelon species and help to elucidate the roles played by chitinases in the responses of watermelon to various stresses.

Funder

Seed Innovation Project of Northwest A&F University

National Natural Science Foundation of Shaanxi Province, China

Key Research and Development Project of Yangling Seed Industry Innovation Center

High-quality Development and Ecological Protection Science and Technology Innovation Project of Ningxia Academy of Agriculture and Forestry Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3