Over-Production of the Human SLC7A10 in E. coli and Functional Assay in Proteoliposomes

Author:

Galluccio Michele1ORCID,Mazza Tiziano1ORCID,Scalise Mariafrancesca1ORCID,Tripicchio Martina1ORCID,Scarpelli Martina1,Tolomeo Maria1,Pochini Lorena12,Indiveri Cesare12ORCID

Affiliation:

1. Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy

2. National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy

Abstract

The human SLC7A10 transporter, also known as ASC-1, catalyzes the transport of some neutral amino acids. It is expressed in astrocytes, neurons, and adipose tissues, playing roles in learning, memory processes, and lipid metabolism, thus being involved in neurological and metabolic pathologies. Structure/function studies on this transporter are still in their infancy. In this study, we present a methodology for producing the recombinant human transporter in E. coli. Its transport function was assayed in proteoliposomes following the uptake of radiolabeled L-serine. After the testing of several growth conditions, the hASC-1 transporter was successfully expressed in BL21(DE3) codon plus RIL in the presence of 0.5% glucose and induced with 0.05 mM IPTG. After solubilization with C12E8 and cholesteryl hemisuccinate and purification by Ni-chelating chromatography, hASC-1 was reconstituted in proteoliposomes. In this experimental system it was able to catalyze an Na+-independent homologous antiport of L-serine. A Km for L-serine transport of 0.24 mM was measured. The experimental model developed in this work represents a reproducible system for the transport assay of hASC-1 in the absence of interferences. This tool will be useful to unveil unknown transport properties of hASC-1 and for testing ligands with possible application in human pharmacology.

Funder

PRIN

Next Generation EU

CNR strategic project NUTRAGE

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3