Modulation of TRPV1 and TRPA1 Channels Function by Sea Anemones’ Peptides Enhances the Viability of SH-SY5Y Cell Model of Parkinson’s Disease

Author:

Kolesova Yuliya S.12ORCID,Stroylova Yulia Y.23ORCID,Maleeva Ekaterina E.1,Moysenovich Anastasia M.14,Pozdyshev Denis V.3ORCID,Muronetz Vladimir I.3,Andreev Yaroslav A.12ORCID

Affiliation:

1. Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia

2. Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia

3. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia

4. Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia

Abstract

Cellular dysfunction during Parkinson’s disease leads to neuroinflammation in various brain regions, inducing neuronal death and contributing to the progression of the disease. Different ion channels may influence the process of neurodegeneration. The peptides Ms 9a-1 and APHC3 can modulate the function of TRPA1 and TRPV1 channels, and we evaluated their cytoprotective effects in differentiated to dopaminergic neuron-like SH-SY5Y cells. We used the stable neuroblastoma cell lines SH-SY5Y, producing wild-type alpha-synuclein and its mutant A53T, which are prone to accumulation of thioflavin-S-positive aggregates. We analyzed the viability of cells, as well as the mRNA expression levels of TRPA1, TRPV1, ASIC1a channels, alpha-synuclein, and tyrosine hydroxylase after differentiation of these cell lines using RT-PCR. Overexpression of alpha-synuclein showed a neuroprotective effect and was accompanied by a reduction of tyrosine hydroxylase expression. A mutant alpha-synuclein A53T significantly increased the expression of the pro-apoptotic protein BAX and made cells more susceptible to apoptosis. Generally, overexpression of alpha-synuclein could be a model for the early stages of PD, while expression of mutant alpha-synuclein A53T mimics a genetic variant of PD. The peptides Ms 9a-1 and APHC3 significantly reduced the susceptibility to apoptosis of all cell lines but differentially influenced the expression of the genes of interest. Therefore, these modulators of TRPA1 and TRPV1 have the potential for the development of new therapeutic agents for neurodegenerative disease treatment.

Funder

Russian Scientific Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3