Intracranial Assessment of Androgen Receptor Antagonists in Mice Bearing Human Glioblastoma Implants

Author:

Zalcman Nomi12,Larush Liraz3,Ovadia Haim2,Charbit Hanna12,Magdassi Shlomo3ORCID,Lavon Iris12ORCID

Affiliation:

1. Leslie and Michael Gaffin Center for Neuro-Oncology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel

2. Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel

3. Casali Center, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91120, Israel

Abstract

The median survival time of patients with an aggressive brain tumor, glioblastoma, is still poor due to ineffective treatment. The discovery of androgen receptor (AR) expression in 56% of cases offers a potential breakthrough. AR antagonists, including bicalutamide and enzalutamide, induce dose-dependent cell death in glioblastoma and glioblastoma-initiating cell lines (GIC). Oral enzalutamide at 20 mg/kg reduces subcutaneous human glioblastoma xenografts by 72% (p = 0.0027). We aimed to further investigate the efficacy of AR antagonists in intracranial models of human glioblastoma. In U87MG intracranial models, nude mice administered Xtandi (enzalutamide) at 20 mg/kg and 50 mg/kg demonstrated a significant improvement in survival compared to the control group (p = 0.24 and p < 0.001, respectively), confirming a dose–response relationship. Additionally, we developed a newly reformulated version of bicalutamide, named “soluble bicalutamide (Bic-sol)”, with a remarkable 1000-fold increase in solubility. This reformulation significantly enhanced bicalutamide levels within brain tissue, reaching 176% of the control formulation’s area under the curve. In the U87MG intracranial model, both 2 mg/kg and 4 mg/kg of Bic-sol exhibited significant efficacy compared to the vehicle-treated group (p = 0.0177 and p = 0.00364, respectively). Furthermore, combination therapy with 8 mg/kg Bic-sol and Temozolomide (TMZ) demonstrated superior efficacy compared to either Bic-sol or TMZ as monotherapies (p = 0.00706 and p = 0.0184, respectively). In the ZH-161 GIC mouse model, the group treated with 8 mg/kg Bic-sol as monotherapy had a significantly longer lifespan than the groups treated with TMZ or the vehicle (p < 0.001). Our study demonstrated the efficacy of androgen receptor antagonists in extending the lifespan of mice with intracranial human glioblastoma, suggesting a promising approach to enhance patient outcomes in the fight against this challenging disease.

Funder

Israel innovation authority

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3