Substances Secreted by Lactobacillus spp. from the Urinary Tract Microbiota Play a Protective Role against Proteus mirabilis Infections and Their Complications

Author:

Szczerbiec Dominika1,Słaba Mirosława2,Torzewska Agnieszka1

Affiliation:

1. Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland

2. Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland

Abstract

Proteus mirabilis urinary tract infections can lead to serious complications such as development of urinary stones. Lactobacillus spp., belonging to the natural microbiota of the urinary tract, exhibit a number of antagonistic mechanisms against uropathogens, including the secretion of organic acids. In this study, we determined the anti-adhesion, anti-cytotoxicity and anti-crystallization properties of the substances secreted by Lactobacillus. For this purpose, membrane inserts with a pore diameter 0.4 μm were used, which prevent mixing of cultured cells, simultaneously enabling the diffusion of metabolic products. The intensity of crystallization was assessed by measuring the levels of Ca2+, Mg2+ and NH3 and by observing crystals using microscopic methods. The cytotoxicity of the HCV-29 cell line was determined using the LDH and MTT assays, and the impact of lactobacilli on P. mirabilis adhesion to the bladder epithelium was assessed by establishing CFU/mL after cell lysis. It was shown that in the presence of L. gasseri the adhesion of P. mirabilis and the cytotoxicity of the cells decreased. The degree of crystallization was also inhibited in all experimental models. Moreover, it was demonstrated that L. gasseri is characterized by the secretion of a high concentration of L-lactic acid. These results indicate that L-lactic acid secreted by L. gasseri has a significant impact on the crystallization process and pathogenicity of P. mirabilis.

Funder

University of Lodz Excellence Initiative—Research University (IDUB) competition

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3