Copper(II) Complexes with 1-(Isoquinolin-3-yl)heteroalkyl-2-ones: Synthesis, Structure and Evaluation of Anticancer, Antimicrobial and Antioxidant Potential

Author:

Balewski Łukasz1ORCID,Plech Tomasz2ORCID,Korona-Głowniak Izabela3ORCID,Hering Anna4ORCID,Szczesio Małgorzata5ORCID,Olczak Andrzej5ORCID,Bednarski Patrick J.6ORCID,Kokoszka Jakub1,Kornicka Anita1ORCID

Affiliation:

1. Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland

2. Department of Pharmacology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland

3. Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland

4. Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland

5. Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland

6. Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, F.-L. Jahn Strasse 17, D-17489 Greifswald, Germany

Abstract

Four copper(II) complexes, C1–4, derived from 1-(isoquinolin-3-yl)heteroalkyl-2-one ligands L1–4 were synthesized and characterized using an elemental analysis, IR spectroscopic data as well as single crystal X-ray diffraction data for complex C1. The stability of complexes C1–4 under conditions mimicking the physiological environment was estimated using UV-Vis spectrophotometry. The antiproliferative activity of both ligands L1–4 and copper(II) compounds C1–4 were evaluated using an MTT assay on four human cancer cell lines, A375 (melanoma), HepG2 (hepatoma), LS-180 (colon cancer) and T98G (glioblastoma), and a non-cancerous cell line, CCD-1059Sk (human normal skin fibroblasts). Complexes C1–4 showed greater potency against HepG2, LS180 and T98G cancer cell lines than etoposide (IC50 = 5.04–14.89 μg/mL vs. IC50 = 43.21–>100 μg/mL), while free ligands L1–4 remained inactive in all cell lines. The prominent copper(II) compound C2 appeared to be more selective towards cancer cells compared with normal cells than compounds C1, C3 and C4. The treatment of HepG2 and T98G cells with complex C2 resulted in sub-G1 and G2/M cell cycle arrest, respectively, which was accompanied by DNA degradation. Moreover, the non-cytotoxic doses of C2 synergistically enhanced the cytotoxic effects of chemotherapeutic drugs, including etoposide, 5-fluorouracil and temozolomide, in HepG2 and T98G cells. The antimicrobial activities of ligands L2–4 and their copper(II) complexes C2–4 were evaluated using different types of Gram-positive bacteria, Gram-negative bacteria and yeast species. No correlation was found between the results of the antiproliferative and antimicrobial experiments. The antioxidant activities of all compounds were determined using the DPPH and ABTS radical scavenging methods. Antiradical tests revealed that among the investigated compounds, copper(II) complex C4 possessed the strongest antioxidant properties. Finally, the ADME technique was used to determine the physicochemical and drug-likeness properties of the obtained complexes.

Funder

MUGs’ Experienced Researcher Program

Medical University of Gdansk

Medical University of Lublin

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3