Hemetsberger–Knittel and Ketcham Synthesis of Heteropentalenes with Two (1:1), Three (1:2)/(2:1) and Four (2:2) Heteroatoms

Author:

Tokárová Zita1,Gašparová Renáta1,Kabaňová Natália1,Gašparová Marcela1,Balogh Róbert12ORCID

Affiliation:

1. Department of Chemistry, Faculty of Natural Sciences, University of St. Cyril and Methodius in Trnava, 917 01 Trnava, Slovakia

2. Polymer Institute, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia

Abstract

The synthetic methods leading to furo[3,2-b]pyrroles and thiazolo [5,4-d]thiazoles are reviewed herein. Furo-, thieno- and seleno [3,2-b]pyrroles are related to heteropentalenes, containing two heteroatoms in the entire structure, one each per core. The synthetic approach follows the Hemetsberger–Knittel protocol covering three reaction steps—the nucleophilic substitution of halogen-containing aliphatic carboxylic acid esters, Knoevenagel condensation and, finally, thermolysis promoting the intramolecular cyclocondensation to O,N-heteropentalene. The Hemetsberger–Knittel reaction sequence is also known for the preparation of O,N-heteropentalenes with three heteroatoms (2:1) and their sulphur and selen heteroatoms containing structural analogues and bispyrroles. The synthetic approach towards thiazolo [5,4-d] thiazoles represents a more straightforward route, according to the Ketcham cyclocondensation. Proceeding with the Ketcham process is more challenging since it occurs stepwise and the formation of by-products is obvious. Thiazolo [5,4-d]thiazole is a representative of the aromatic heteropentalene with four heteroatoms in the structure—twinned N and S, two for each of the five-membered rings. The synthetic approaches towards those particular heteropentalnes have been chosen as a consequence of our ongoing research dealing with the design, synthesis and applications of substituted furo [3,2-b]pyrroles and thiazolo [5,4-d]thiazole-based derivatives. While the furopyrroles are known for their pharmacological activity, thiazolothiazoles have become of interest to materials science. We are aware that from a “bank” of existing compounds/procedures not all are presented in this review, and we apologise to respective groups whose research have not been objectively included.

Publisher

MDPI AG

Subject

General Medicine

Reference105 articles.

1. Multifunctional Heteropentalenes: From Synthesis to Optoelectronic applications;Stecko;J. Am. Chem. Soc.,2022

2. The pentalenyl dianion;Katz;J. Am. Chem. Soc.,1962

3. Heteropentalenes aromaticity;Alkorta;J. Mol. Struct.,2008

4. Mesomeric betaine derivatives of heteropentalenes;Ramsden;Tetrahedron,1977

5. Barnet, A., Nielsen Brønsded, M., Drabowicz, J., Joule, J.A., Schaumann, E., and Weinreb, S.M. (2014). Science of Synthesis: Knowledge Updates 2014/3, Thieme. [1st ed.].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3