Fracture Behavior and Mechanism of Nb-Si-Based Alloys with Heterogeneous Layered Structure

Author:

Wang Sheng1,Wang Xiaoli12,Wang Zhiming12,Sun Zhiping12,Ye Weicheng1,Zhao Qihu1

Affiliation:

1. School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

2. Shandong Institute of Mechanical Design and Research, Jinan 250031, China

Abstract

Novel Nb-Si-based alloys with heterogeneous layers that have the same composition (Nb-16 at.%Si) but different phase morphologies were designed in this work. Heterogeneous layered structure (HLS) was successfully fabricated in Nb-16Si alloys by layering composite powders after various degrees of mechanical alloying (6 h, 12 h, 18 h, and 24 h) alternately and subsequent spark plasma sintering (SPS). The influence of HLS on the fracture behavior at both room and elevated temperature was investigated via single-edge notched bending (SENB) and high-temperature compression, respectively. The results show that the diversified HLS is obtained by combining hard layers containing fine equiaxed crystals and/or soft ones with coarse lamellar niobium solid solution (Nbss). By affecting the crack propagation in SENB, HLS is favorable for improving the fracture toughness and exhibits a significant increase compared with the corresponding homogenous microstructure. Moreover, for the same HLS, a more excellent performance is achieved when the initial crack is located in the soft layer and extended across the interface to the hard one through crack bridging, crack deflection, crack branching, and shielding effect. Fracture starts in the soft layer (from powders of ball-milled for 12 h) of a 12–24 alloy, and a maximum KQ value (14.89 MPa·mm1/2) is consequently obtained, which is 33.8% higher than that of the homogeneous Nb-16Si alloy. Furthermore, the heterogeneous layered alloys display superior high-temperature compression strength, which is attributable to the dislocation multiplication and fine-grained structure. The proposed strategy in this study offers a promising route for fabricating Nb-Si-based alloys with optimized and improved mechanical properties to meet practical applications.

Funder

Natural Science Foundation of Shandong province

research and application of evaporative condensation integrated quantity of heat recovery type high efficiency and energy conservation dehumidifier

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3