Artificial Intelligence System for Predicting Prostate Cancer Lesions from Shear Wave Elastography Measurements

Author:

Secasan Ciprian Cosmin,Onchis Darian,Bardan RazvanORCID,Cumpanas Alin,Novacescu DorinORCID,Botoca Corina,Dema AlisORCID,Sporea Ioan

Abstract

(1) Objective: To design an artificial intelligence system for prostate cancer prediction using the data obtained by shear wave elastography of the prostate, by comparing it with the histopathological exam of the prostate biopsy specimens. (2) Material and methods: We have conducted a prospective study on 356 patients undergoing transrectal ultrasound-guided prostate biopsy, for suspicion of prostate cancer. All patients were examined using bi-dimensional shear wave ultrasonography, which was followed by standard systematic transrectal prostate biopsy. The mean elasticity of each of the twelve systematic biopsy target zones was recorded and compared with the pathological examination results in all patients. The final dataset has included data from 223 patients with confirmed prostate cancer. Three machine learning classification algorithms (logistic regression, a decision tree classifier and a dense neural network) were implemented and their performance in predicting the positive lesions from the elastographic data measurements was assessed. (3) Results: The area under the curve (AUC) results were as follows: for logistic regression—0.88, for decision tree classifier—0.78 and for the dense neural network—0.94. Further use of an upsampling strategy for the training set of the neural network slightly improved its performance. Using an ensemble learning model, which combined the three machine learning models, we have obtained a final accuracy of 98%. (4) Conclusions: Bi-dimensional shear wave elastography could be very useful in predicting prostate cancer lesions, especially when it benefits from the computational power of artificial intelligence and machine learning algorithms.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3