Limited Lactosylation of Beta-Lactoglobulin from Cow’s Milk Exerts Strong Influence on Antigenicity and Degranulation of Mast Cells

Author:

Bosman Gerlof P.,Oliveira Sergio,Simons Peter J.,Sastre Torano Javier,Somsen Govert W.ORCID,Knippels Leon M. J.,Haselberg RobORCID,Pieters Roland J.ORCID,Garssen JohanORCID,Knipping KarenORCID

Abstract

Background: beta-lactoglobulin (BLG) is one of the major cow’s milk proteins and the most abundant allergen in whey. Heating is a common technologic treatment applied during milk transformational processes. Maillardation of BLG in the presence of reducing sugars and elevated temperatures may influence its antigenicity and allergenicity. Primary objective: to analyze and identify lactosylation sites by capillary electrophoresis mass spectrometry (CE-MS). Secondary objective: to assess the effect of lactosylated BLG on antigenicity and degranulation of mast cells. Methods: BLG was lactosylated at pH 7, a water activity (aw) of 0.43, and a temperature of 65 °C using a molar ratio BLG:lactose of 1:1 by incubating for 0, 3, 8, 16 or 24 h. For the determination of the effect on antibody-binding capacity of lactosylated BLG, an ELISA was performed. For the assessment of degranulation of the cell-line RBL-hεIa-2B12 transfected with the human α-chain, Fcε receptor type 1 (FcεRI) was used. Results: BLG showed saturated lactosylation between 8 and 16 incubation hours in our experimental setup. Initial stage lactosylation sites L1 (N-terminus)—K47, K60, K75, K77, K91, K138 and K141—have been identified using CE-MS. Lactosylated BLG showed a significant reduction of both the IgG binding (p = 0.0001) as well as degranulation of anti-BLG IgE-sensitized RBL-hεIa-2B12 cells (p < 0.0001). Conclusions and clinical relevance: this study shows that lactosylation of BLG decreases both the antigenicity and degranulation of mast cells and can therefore be a promising approach for reducing allergenicity of cow’s milk allergens provided that the process is well-controlled.

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3