Analysis and Minimization of Race Tracking in the Resin-Transfer-Molding Process by Monte Carlo Simulation

Author:

Agogué Romain1,Shakoor Modesar2ORCID,Beauchêne Pierre3,Park Chung Hae2ORCID

Affiliation:

1. IPC—Centre Technique Industriel de la Plasturgie et des Composites, Rue Léonard de Vinci, F-53810 Laval, France

2. IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Materials and Processes, F-59000 Lille, France

3. ONERA (The French Aerospace Lab), 29 Avenue de la Division Leclerc, F-92320 Chatillon, France

Abstract

A numerical analysis of the influence of race tracking on dry spots formation and the accuracy of permeability measurement during the resin-transfer-molding process is presented. In the numerical simulation of the mold-filling process, defects are randomly generated, and their effect is assessed by a Monte Carlo simulation method. The effect of race tracking on the unsaturated permeability measurement and dry spots formation is investigated on flat plates. It is observed that the race-tracking defects located near the injection gate increase up to 40% of the value of the measured unsaturated permeability. The race-tracking defects located near the air vents are more likely to generate dry spots, whereas those near the injection gates have a less significant influence on dry spots generation. Depending on vent location, it has for instance been shown that the dry spot area can increase by a factor of 30. Dry spots may be mitigated by placing an air vent at a suitable location based on the numerical analysis results. Moreover, those results may be helpful to determine optimal sensor locations for the on-line control of mold-filling processes. Finally, the approach is successfully applied to a complex geometry.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3