Author:
Carter-Fenk Kimberly,Allen Heather
Abstract
Sea spray aerosol (SSA) is highly enriched in marine-derived organic compounds during seasons of high biological productivity, and saturated fatty acids comprise one of the most abundant classes of molecules. Fatty acids and other organic compounds form a film on SSA surfaces, and SSA particle surface-area-to-volume ratios are altered during aging in the marine boundary layer (MBL). To understand SSA surface organization and its role during dynamic atmospheric conditions, an SSA proxy fatty acid film and its individual components stearic acid (SA), palmitic acid (PA), and myristic acid (MA) are studied separately using surface pressure–area ( Π − A ) isotherms and Brewster angle microscopy (BAM). The films were spread on an aqueous NaCl subphase at pH 8.2, 5.6, and 2.0 to mimic nascent to aged SSA aqueous core composition in the MBL, respectively. We show that the individual fatty acid behavior differs from that of the SSA proxy film, and at nascent SSA pH the mixture yields a monolayer with intermediate rigidity that folds upon film compression to the collapse state. Acidification causes the SSA proxy film to become more rigid and form 3D nuclei. Our results reveal film morphology alterations, which are related to SSA reflectivity, throughout various stages of SSA aging and provide a better understanding of SSA impacts on climate.
Funder
National Science Foundation
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献