Modeling and Analysis Framework for Investigating the Impact of Dust and Temperature on PV Systems’ Performance and Optimum Cleaning Frequency

Author:

Al-Kouz Wael,Al-Dahidi SameerORCID,Hammad Bashar,Al-Abed Mohammad

Abstract

This paper proposes computational models to investigate the effects of dust and ambient temperature on the performance of a photovoltaic system built at the Hashemite University, Jordan. The system is connected on-grid with an azimuth angle of 0° and a tilt angle of 26°. The models have been developed employing optimized architectures of artificial neural network (ANN) and extreme learning machine (ELM) models to estimate conversion efficiency based on experimental data. The methodology of building the models is demonstrated and validated for its accuracy using different metrics. The effect of each parameter was found to be in agreement with the well-known relationship between each parameter and the predicted efficiency. It is found that the optimized ELM model predicts conversion efficiency with the best accuracy, yielding an R2 of 91.4%. Moreover, a recommendation for cleaning frequency of every two weeks is proposed. Finally, different scenarios of electricity tariffs with their sensitivity analyses are illustrated.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3