Abstract
The estimation of the unknown parameters of Type II Half Logistic Weibull (TIIHLW) distribution was analyzed in this paper. The maximum likelihood and Bayes methods are used as estimation methods. These estimators are used to estimate the fuzzy reliability function and to choose the best estimator of the fuzzy reliability function by comparing the mean square error (MSE). The simulation’s results showed that fuzziness is better than reality for all sample sizes, and fuzzy reliability at Bayes predicted estimates is better than the maximum likelihood technique. It produces the lowest average MSE until a sample size of n = 50 is obtained. A simulated data set is applied to diagnose the performance of the two techniques applied here. A real data set is used as a practice for the model discussed and developed the maximum likelihood estimate alternative model of TIIHLW as Topp Leone inverted Kumaraswamy, modified Kies inverted Topp–Leone, Kumaraswamy Weibull–Weibull, Marshall–Olkin alpha power inverse Weibull, and odd Weibull inverted Topp–Leone. We conclude that the TIIHLW is the best distribution fit for this data.
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Reference33 articles.
1. Fuzzy Reliability Theory Based on Membership Function
2. Comparison of Interval Estimations for P (X < Y) in Marshall-Olkin’s Model;Lee;J. Korean Data Inf. Sci. Soc.,1996
3. On Nonparametric Estimation of a Reliability Function
4. Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems;Chen,2000
5. Fuzzy reliability estimation using Bayesian approach
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献