Recent Advancements in the Treatment of Petroleum Refinery Wastewater

Author:

Lawan Muhammad Shettima1ORCID,Kumar Rajeev1ORCID,Rashid Jamshaid23ORCID,Barakat Mohamed Abou El-Fetouh14ORCID

Affiliation:

1. Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia

2. Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan

3. BNU-HKUST Laboratory for Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China

4. Central Metallurgical R & D Institute, Cairo 11421, Egypt

Abstract

The treatment of petroleum refinery wastewater (PRWW) is of great interest in industrial wastewater management. This wastewater contains a diverse concentration of contaminants such as oil and grease, petroleum hydrocarbons, phenols, ammonia, and sulfides, as well as other organic and inorganic composites. Refinery wastewater treatment has been attempted through various processes, including physical, biological, chemical, and hybrid methods, which combine two or more techniques. This review aims to summarize current research studies involved in the treatment of petroleum refinery wastewater using conventional, advanced, and integrated treatment techniques. Furthermore, it critically highlights the efficiencies and major limitations of each technique and the prospects for improvements. Several conventional treatment techniques (basically, the physicochemical and biological processes) are discussed. In this context, advanced oxidation processes (AoPs), especially electrochemical oxidation and photocatalysis, as well as integrated/hybrid processes are found to be effective in removing the recalcitrant fraction of organic pollutants through their various inherent mechanisms. These techniques could effectively remove COD and phenol concentrations with an average removal efficiency exceeding 90%. Hence, the review also presents an elaborate discussion of the photocatalytic process as one of the advanced techniques and highlights some basic concepts to optimize the degradation efficiency of photocatalysts. Finally, a brief recommendation for research prospects is also presented.

Funder

Deanship of Scientific Research at King Abdulaziz University, Jeddah

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3