Compressive Properties and Energy Absorption Behavior of 316L Steel Foam Prepared by Space Holder Technique

Author:

Hu Guangyu1,Xu Guili1,Gao Qiang1,Feng Zhanhao1,Huang Peng1ORCID,Zu Guoyin1

Affiliation:

1. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China

Abstract

The effect of porosity and pore size on the quasi-static compression properties and energy absorption characteristics of the steel foam was investigated in this paper. The 316L steel foams were prepared through powder metallurgy using urea as the space holder. The macrostructure of steel foam and microstructure of the pore walls were characterized, and the quasi-static compression experiments were conducted on the specimens in the axial direction at a strain rate of 10−3 s−1. The results show that the increase in porosity decreases the yield strength and plastic modulus of the steel foam but increases the densification strain of the steel foam. The yield strength of the steel foam decreases significantly when the pore size is 2.37 mm. However, the pore size has little effect on the plastic modulus. Moreover, the energy absorption per volume of the steel foam decreases with increasing porosity at the same strain. The effect of porosity on energy absorption efficiency is greater than that of pore size.

Funder

National Natural Science Foundation of China

Liao Ning Revitalization Talents Program

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3