Numerical Investigation on Precipitation Hardening of Mg-Gd Alloys

Author:

Ge Yulong1,Yang Chunyan1,Ma Yuwei2,Chen Yang1ORCID,Gupta Manoj3ORCID

Affiliation:

1. Department of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China

2. Department of Architecture and Transportation Engineering, Guilin University of Electronic Technology, Guilin 541004, China

3. Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore

Abstract

The second-phase particles in magnesium alloys could affect the mechanical properties of the material significantly. In this work, 3D finite element models with explicit incorporation of second-phase particles are established. The simulations are calibrated with the experimental results of the Mg-1Gd alloy. The influences of factors, such as the particle distribution, size, and orientation of cylindrical particles, on precipitation hardening are investigated in detail. Three interface conditions between particles and the matrix—perfect bonding and high- and low-strength bonding—are studied at the same time. The interface conditions are shown to exert a stronger influence on precipitation hardening compared to the factors of particle distribution and size. In contrast, the influence of the orientation of cylindrical particles at grain boundaries outweighs the effect of interface property. When second-phase particles are relatively large and all located at grain boundaries, the hardening effect can be improved, and the magnesium alloy shows relatively high flow stress. However, the high hardening effect from the second-phase particles could result in high local stress concentration and possible early failure or low ductility of Mg alloys.

Funder

Guangxi Science and Technology Program

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3