Improvement of Formability in Parallel Double-Branched Tube Hydroforming Combined with Pre-Forming and Crushing Processes

Author:

Chen Mingtao1,Hu Jinhao1,Xiao Yunya1,Liang Junwei1,Ye Zhiwei1,Wu Hongchao1,Zhou Feng1,Mao Guisheng1,Long Hui1,Tang Wei1ORCID,Xiao Xiaoting2

Affiliation:

1. School of Intelligent Engineering, Shaoguan University, Shaoguan 512005, China

2. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China

Abstract

In hydroforming of parallel double-branch tubes, the material entering the branch zone is obstructed by material accumulation in the main tubes and corners, which decreases the branch height. A tube hydroforming approach is combined with pre-forming and crushing (THPC) to mitigate this problem. A larger diameter tube blank is flattened for pre-forming and then subjected to radial compression for crushing. In the next step, hydroforming forms the parallel double-branch tubes. Experiments and numerical simulations are then carried out to analyze the effect of traditional tube hydroforming (TTH) and the proposed THPC process on the formability of parallel double-branch tubes. The results show that for tubes obtained via THPC, the tube burst pressure increases by 27.5% and the branch height increases 2.37-fold compared to TTH. Additionally, the flattening, pre-forming, and crushing stages cause work hardening of the tube when using the TPHC process. Flattened tubes undergo radial compression to improve the material flowing into the branch tube. The formability of parallel double-branched tubes can be improved by using the TPHC process. Consequently, tube hydroforming, combined with pre-forming and crushing, has been confirmed as a feasible forming process for fabricating parallel double-branch tubes.

Funder

research project of Department of Education of Province

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3