Influence of Tempering Temperature on Mechanical and Rotational Bending Fatigue Properties of 40CrNi2MoE Steel

Author:

Yao Chang-Da1,Li Yong1ORCID,Zang Zhi-Wei2,Li Xin-Yang1,Han Shun1

Affiliation:

1. Institute of Special Steels, Central Iron and Steel Research Institute Co., Ltd., Beijing 100081, China

2. Tianjin Heavy Industries Research & Development Co., Ltd., Tianjin 300457, China

Abstract

In order to examine the mechanical properties and rotational bending fatigue performance of 40CrNi2MoE steel subsequent to tempering at varying temperatures, the steel specimen was subjected to tempering within the range of 400~460 °C. SEM, EBSD, and TEM were used to analyze the microstructure as well as precipitates. The strain hardening law was studied using the modified Crussard–Jaoult method. Investigations were undertaken to reveal the rotational bending fatigue life with respect to the tempering temperature. The findings indicate that the strength and fatigue life of the examined steels exhibit a decline as the tempering temperature increases, with the primary factor affecting this trend being the alteration in dislocation density. No notable impact on the fatigue fracture morphology exerted by tempering temperature was found within the range of the experiment. The C–J model analysis reveals that the work-hardening behavior of the trial steels is influenced by dislocations and the second phase.

Funder

Science and Technology Department, Heilongjiang Province

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3