Analysis of Nanoindentation Test Results of Asphalt Mixture with Different Gradations

Author:

Yu Yunhong,Xu Gang,Wang Tianling,Chen Huimin,Wang HouzhiORCID,Yang Jun

Abstract

Nanoindentation has been applied in the field of asphalt mixtures, but, at the nano-scale, changes in the composition of the mixture and material properties can have a significant impact on the results. Therefore, it is necessary to investigate the feasibility of nanoindentation tests on different types of asphalt mixtures with different gradations and the influence of material properties and test methods on nanoindentation results. In this paper, the nanoindentation test results on three kinds of asphalt mixture (AC-13, SMA-13, and OGFC-13) with different aggregate gradations were investigated. The load-displacement curves and moduli obtained from the nanoindentation tests were analyzed. In addition, nanoindentation tests were carried out before and after polishing with different ratios of filler and asphalt (RFA) (0.8–1.6). On this basis, the morphology of asphalt specimens with different RFAs is observed by scanning electron microscopy (SEM) imaging. The results indicate that using the nanoindentation test to characterize the mechanical behavior of asphalt mixture, the confidence level of the dense-graded mixture is low, and non-dense-graded mixtures are used as much as possible. Moreover, results illustrate that the nanoindentation modulus tends to increase as the RFA increases. and the SEM chart shows that the higher the mineral powder content in the mastic, the more complex the bitumen and mineral powder interaction surface, confirming the influence of mineral powder content on the nanoindentation test results. Furthermore, the effect of polishing is almost insignificant.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3