Characterization and Potential Action Mode Divergences of Homologous ACO1 Genes during the Organ Development and Ripening Process between Non-Climacteric Grape and Climacteric Peach

Author:

Luo Linjia1ORCID,Zhao Pengcheng1,Su Ziwen1ORCID,Huang Yuqing1,Zhang Yanping1,Mu Qian1,Xuan Xuxian1,Qu Ziyang1,Yu Mucheng1,Qi Ziyang1,Aziz Rana Badar1,Gong Peijie1,Xie Zhenqiang1,Fang Jinggui1,Wang Chen1

Affiliation:

1. College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China

Abstract

Ethylene is one crucial phytohormone modulating plants’ organ development and ripening process, especially in fruits, but its action modes and discrepancies in non-climacteric grape and climacteric peach in these processes remain elusive. This work is focused on the action mode divergences of ethylene during the modulation of the organ development and ripening process in climacteric/non-climacteric plants. We characterized the key enzyme genes in the ethylene synthesis pathway, VvACO1 and PpACO1, and uncovered that their sequence structures are highly conserved, although their promoters exhibit important divergences in the numbers and types of the cis-elements responsive to hormones, implying various responses to hormone signals. Subsequently, we found the two have similar expression modes in vegetative organ development but inverse patterns in reproductive ones, especially in fruits. Then, VvACO1 and PpACO1 were further validated in promoting fruit ripening functions through their transient over-expression/RNAi-expression in tomatoes, of which the former possesses a weaker role than the latter in the fruit ripening process. Our findings illuminated the divergence in the action patterns and function traits of the key VvACO1/PpACO1 genes in the tissue development of climacteric/non-climacteric plants, and they have implications for further gaining insight into the interaction mechanism of ethylene signaling during the modulation of the organ development and ripening process in climacteric/non-climacteric plants.

Funder

Natural Science Funds

Jiangsu province seed industry revitalization of the leading project

Priority Academic Program Development of Jiangsu Higher Education Institutions

Provincial Natural Science Foundation of Jiangsu

Postgraduate Research and Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3