The CYP80A and CYP80G Are Involved in the Biosynthesis of Benzylisoquinoline Alkaloids in the Sacred Lotus (Nelumbo nucifera)

Author:

Hao Chenyang1,Yu Yuetong1,Liu Yan1,Liu An1,Chen Sha1ORCID

Affiliation:

1. State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China

Abstract

Bisbenzylisoquinoline and aporphine alkaloids are the two main pharmacological compounds in the ancient sacred lotus (Nelumbo nucifera). The biosynthesis of bisbenzylisoquinoline and aporphine alkaloids has attracted extensive attention because bisbenzylisoquinoline alkaloids have been reported as potential therapeutic agents for COVID-19. Our study showed that NnCYP80A can catalyze C-O coupling in both (R)-N-methylcoclaurine and (S)-N-methylcoclaurine to produce bisbenzylisoquinoline alkaloids with three different linkages. In addition, NnCYP80G catalyzed C-C coupling in aporphine alkaloids with extensive substrate selectivity, specifically using (R)-N-methylcoclaurine, (S)-N-methylcoclaurine, coclaurine and reticuline as substrates, but the synthesis of C-ring alkaloids without hydroxyl groups in the lotus remains to be elucidated. The key residues of NnCYP80G were also studied using the 3D structure of the protein predicted using Alphafold 2, and six key amino acids (G39, G69, A211, P288, R425 and C427) were identified. The R425A mutation significantly decreased the catalysis of (R)-N-methylcoclaurine and coclaurine inactivation, which might play important role in the biosynthesis of alkaloids with new configurations.

Funder

Scientific and Technological Innovation Project of China Academy of Chinese Medical Sciences

National Natural Science Foundation of China

Fundamental Research Funds for the Central public welfare research institutes of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3