Use of Multiple Machine Learning Approaches for Selecting Urothelial Cancer-Specific DNA Methylation Biomarkers in Urine

Author:

Köhler Christina U.1ORCID,Schork Karin2ORCID,Turewicz Michael2ORCID,Eisenacher Martin2ORCID,Roghmann Florian3ORCID,Noldus Joachim3,Marcus Katrin2ORCID,Brüning Thomas1,Käfferlein Heiko U.1

Affiliation:

1. Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany

2. Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum and Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Gesundheitscampus 4, 44081 Bochum, Germany

3. Department of Urology, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany

Abstract

Diagnosing urothelial cancer (UCa) via invasive cystoscopy is painful, specifically in men, and can cause infection and bleeding. Because the UCa risk is higher for male patients, urinary non-invasive UCa biomarkers are highly desired to stratify men for invasive cystoscopy. We previously identified multiple DNA methylation sites in urine samples that detect UCa with a high sensitivity and specificity in men. Here, we identified the most relevant markers by employing multiple statistical approaches and machine learning (random forest, boosted trees, LASSO) using a dataset of 251 male UCa patients and 111 controls. Three CpG sites located in ALOX5, TRPS1 and an intergenic region on chromosome 16 have been concordantly selected by all approaches, and their combination in a single decision matrix for clinical use was tested based on their respective thresholds of the individual CpGs. The combination of ALOX5 and TRPS1 yielded the best overall sensitivity (61%) at a pre-set specificity of 95%. This combination exceeded both the diagnostic performance of the most sensitive bioinformatic approach and that of the best single CpG. In summary, we showed that overlap analysis of multiple statistical approaches identifies the most reliable biomarkers for UCa in a male collective. The results may assist in stratifying men for cystoscopy.

Funder

German Network for Bioinformatics Infrastructure

PURE and VALIBIO

CUBiMed.RUB

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3