Lipidomes in Cadaveric Decomposition and Determination of the Postmortem Interval: A Systematic Review

Author:

Caballero-Moreno Leticia1,Luna Aurelio1ORCID,Legaz Isabel1ORCID

Affiliation:

1. Department of Legal and Forensic Medicine, Biomedical Research Institute of Murcia (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia (UMU), El Palmar, 30120 Murcia, Spain

Abstract

Lipids are a large group of natural compounds, together with proteins and carbohydrates, and are essential for various processes in the body. After death, the organism’s tissues undergo a series of reactions that generate changes in some molecules, including lipids. This means that determining the lipid change profile can be beneficial in estimating the postmortem interval (PMI). These changes can also help determine burial sites and advance the localization of graves. The aim was to explore and analyze the decomposition process of corpses, focusing on the transformation of lipids, especially triglycerides (TGs) and fatty acids (FAs), and the possible application of these compounds as markers to estimate PMI and detect burial sites. A systematic review of 24 scientific articles from the last 23 years (2000–2023) was conducted. The results show that membrane glycerophospholipids (such as phosphatidylcholine and phosphatidylglycerol, among others) are the most studied, and the most promising results are obtained, with decreasing patterns as PMI varies. Fatty acids (FAs) are also identified as potential biomarkers owing to the variations in their postmortem concentration. An increase in saturated fatty acids (SFAs), such as stearic acid and palmitic acid, and a decrease in unsaturated fatty acids (UFAs), such as oleic acid and linoleic acid, were observed. The importance of intrinsic and extrinsic factors in decomposition is also observed. Finally, as for the burial sites, the presence of fatty acids and some sterols in burial areas of animal and human remains can be verified. In conclusion, glycerophospholipids and fatty acids are good markers for estimating PMI. It has been observed that there are still no equations for estimating the PMI that can be applied to forensic practice, as intrinsic and extrinsic factors are seen to play a vital role in the decomposition process. As for determining burial sites, the importance of soil and textile samples has been demonstrated, showing a direct relationship between saturated fatty acids, hydroxy fatty acids, and some sterols with decomposing remains.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference67 articles.

1. Lorenzo, J.M., Munekata, P.E.S., Pateiro, M., Barba, F.J., and Domínguez, R. (2022). Food Lipids, Elsevier.

2. Tutorial on Lipidomics;Wang;Anal. Chim. Acta,2019

3. Lipidome in Colorectal Cancer;Yan;Oncotarget,2016

4. High Resolution Mass Spectrometry Coupled with Multivariate Data Analysis Revealing Plasma Lipidomic Alteration in Ovarian Cancer in Asian Women;Zhang;Talanta,2016

5. Plasma Lipidomics Analysis Finds Long Chain Cholesteryl Esters to Be Associated with Alzheimer’s Disease;Proitsi;Transl. Psychiatry,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3