Natural-Origin Betaine Surfactants as Promising Components for the Stabilization of Lipid Carriers

Author:

Pucek-Kaczmarek Agata1ORCID,Celary Dominika1,Bazylińska Urszula1ORCID

Affiliation:

1. Laboratory of Nanocolloids and Disperse Systems, Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

Abstract

In the present work, we demonstrate studies involving the influence of the formulation composition on the physicochemical properties of nanocarriers: solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs). Novel lipid-origin platforms were prepared using two “green” betaine-based surfactants, cocamidopropyl betaine (ROKAmina K30) and coco betaine (ROKAmina K30B), in combination with three different solid lipids, cetyl palmitate (CRODAMOL CP), trimyristin (Dynasan 114), and tristearin (Dynasan 118). Extensive optimization studies included the selection of the most appropriate lipid and surfactant concentration for effective SLN and NLC stabilization. The control parameters involving the hydrodynamic diameters of the obtained nanocarriers along with the size distribution (polydispersity index) were determined by dynamic light scattering (DLS), while shape and morphology were evaluated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). Electrophoretic light scattering (ELS) and turbidimetric method (backscattering profiles) were used to assess colloidal stability. The studied results revealed that both betaine-stabilized SLN and NLC formulations containing CRODAMOL CP as lipid matrix are the most monodisperse and colloidally stable regardless of the other components and their concentrations used, indicating them as the most promising candidates for drug delivery nanosystems with a diverse range of potential uses.

Funder

Department of Physical and Quantum Chemistry and the Faculty of Chemistry at Wroclaw University of Science and Technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3